169 research outputs found

    Antibiotics and the resistant microbiome

    Get PDF

    The microbiome of uncontacted Amerindians

    Get PDF

    The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation

    Get PDF
    The widespread use of antibiotics in the past 80 years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds

    Contextual organismality: Beyond pattern to process in the emergence of organisms

    Get PDF
    Biologists have taken the concept of organism largely for granted. However, advances in the study of chimerism, symbiosis, bacterial-eukaryote associations, and microbial behavior have prompted a redefinition of organisms as biological entities exhibiting low conflict and high cooperation among their parts. This expanded view identifies organisms in evolutionary time. However, the ecological processes, mechanisms, and traits that drive the formation of organisms remain poorly understood. Recognizing that organismality can be context dependent, we advocate elucidating the ecological contexts under which entities do or do not act as organisms. Here we develop a "contextual organismality" framework and provide examples of entities, such as honey bee colonies, tumors, and bacterial swarms, that can act as organisms under specific life history, resource, or other ecological circumstances. We suggest that context dependence may be a stepping stone to the development of increased organismal unification, as the most integrated biological entities generally show little context dependence. Recognizing that organismality is contextual can identify common patterns and testable hypotheses across different entities. The contextual organismality framework can illuminate timeless as well as pressing issues in biology, including topics as disparate as cancer emergence, genomic conflict, evolution of symbiosis, and the role of the microbiota in impacting host phenotype.John Templeton FoundationVersion of record online: 27 October 2016; published open access.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    High-Resolution Structural Validation of the Computational Redesign of Human U1A Protein

    Get PDF
    SummaryAchieving atomic-level resolution in the computational design of a protein structure remains a challenging problem despite recent progress. Rigorous experimental tests are needed to improve protein design algorithms, yet studies of the structure and dynamics of computationally designed proteins are very few. The NMR structure and backbone dynamics of a redesigned protein of 96 amino acids are compared here with the design target, human U1A protein. We demonstrate that the redesigned protein reproduces the target structure to within the uncertainty of the NMR coordinates, even as 65 out of 96 amino acids were simultaneously changed by purely computational methods. The dynamics of the backbone of the redesigned protein also mirror those of human U1A, suggesting that the protein design algorithm captures the shape of the potential energy landscape in addition to the local energy minimum

    Understanding the impact of antibiotic perturbation on the human microbiome

    Get PDF
    The human gut microbiome is a dynamic collection of bacteria, archaea, fungi, and viruses that performs essential functions for immune development, pathogen colonization resistance, and food metabolism. Perturbation of the gut microbiome\u27s ecological balance, commonly by antibiotics, can cause and exacerbate diseases. To predict and successfully rescue such perturbations, first, we must understand the underlying taxonomic and functional dynamics of the microbiome as it changes throughout infancy, childhood, and adulthood. We offer an overview of the healthy gut bacterial architecture over these life stages and comment on vulnerability to short and long courses of antibiotics. Second, the resilience of the microbiome after antibiotic perturbation depends on key characteristics, such as the nature, timing, duration, and spectrum of a course of antibiotics, as well as microbiome modulatory factors such as age, travel, underlying illness, antibiotic resistance pattern, and diet. In this review, we discuss acute and chronic antibiotic perturbations to the microbiome and resistome in the context of microbiome stability and dynamics. We specifically discuss key taxonomic and resistance gene changes that accompany antibiotic treatment of neonates, children, and adults. Restoration of a healthy gut microbial ecosystem after routine antibiotics will require rationally managed exposure to specific antibiotics and microbes. To that end, we review the use of fecal microbiota transplantation and probiotics to direct recolonization of the gut ecosystem. We conclude with our perspectives on how best to assess, predict, and aid recovery of the microbiome after antibiotic perturbation

    A Functional Metagenomic Approach for Expanding the Synthetic Biology Toolbox for Biomass Conversion

    Get PDF
    Sustainable biofuel alternatives to fossil fuel energy are hampered by recalcitrance and toxicity of biomass substrates to microbial biocatalysts. To address this issue, we present a culture-independent functional metagenomic platform for mining Nature's vast enzymatic reservoir and show its relevance to biomass conversion. We performed functional selections on 4.7 Gb of metagenomic fosmid libraries and show that genetic elements conferring tolerance toward seven important biomass inhibitors can be identified. We select two metagenomic fosmids that improve the growth of Escherichia coli by 5.7- and 6.9-fold in the presence of inhibitory concentrations of syringaldehyde and 2-furoic acid, respectively, and identify the individual genes responsible for these tolerance phenotypes. Finally, we combine the individual genes to create a three-gene construct that confers tolerance to mixtures of these important biomass inhibitors. This platform presents a route for expanding the repertoire of genetic elements available to synthetic biology and provides a starting point for efforts to engineer robust strains for biofuel generation

    Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Get PDF
    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host
    corecore